By David Sislen, Alanna Simpson and Yann Kerblat
During an All Saints’ Day mass in Lisbon in that fateful year, an collapsed cathedrals, triggered a 20-foot tsunami, and sparked devastating fires that destroyed nearly 70% of the city’s 23,000 buildings.
The death toll was estimated between 10,000-50,000, leaving the center of a global empire in ruins, with losses equivalent to at the time.
Never in the European history had a natural disaster received such international attention.
The “Great Lisbon Earthquake” had a resounding impact across Europe: – the equivalent of today’s mass media – were reproduced for centuries and across several countries. , influenced by the devastation, argued against large and dense cities in the wake of the disaster, while published three separate texts on the disaster, becoming one of the first thinkers to attempt to explain earthquakes by natural, rather than supernatural, causes.
In the years to follow, careful studies of the event would give rise to modern seismology.
The reconstruction of the city was centered on decisive, ground-breaking measures:
- Science-driven reconstruction. Innovative engineering methods were used by employing a by placing a flexible wooden structure in the walls of buildings that would “shake but not fall.” Other anti-seismic design features were tested by having troops march around them to simulate tremors, leading to the birth of earthquake engineering.
- Recovery planning to identify further risks. , who led the reconstruction, was also mindful of how fatalities could be minimized in the future with good design. Large spaces, good ventilation, orthogonal streets – absent in the medieval city – were implemented to
- Leveraging co-benefits. Given the urgency and shortage of materials, blocks from collapsed buildings were used to , allowing the city to recover much faster while transforming mass debris into modern streets.
But,
The large time interval between devastating earthquakes often explains why such risks quickly fall from collective memory. Historic earthquakes provide a snapshot of possible devastation from a major event. But if we add modern transport, electricity, water and communication lifelines, ageing , and more importantly, dense settlements, a more disturbing scenario emerges.
Experts can’t predict with exact precision when the next large earthquake will happen, but with the improvement of worldwide datasets in past decades, they all agree that the is inevitable , such as those in the Europe and Central Asia region. A recent confirmed that , for example, has the : the country experiences two magnitude 7 or higher earthquakes every century.
Risk information like this does influence decision makers across Europe and Central Asia, who are working to build resilience alongside other forward-thinking measures, including .
In , more than 1077 schools, 18 hospitals, 61 polyclinics and 114 public buildings are now protected from the next earthquake. Across , the Ministry of Education is taking critical steps to improve the seismic safety of its schools, without forgetting .
In , upgrades to the building code will follow investment and commitment in new analysis of the seismic risk.
In , concerns raised about seismic safety of are being thoroughly investigated.
And in , the government is pursuing policy and legislative reform to embed disaster resilience in government investments and maximize .
While Lisbon was presciently rebuilt with sound practices, important lessons from history have too often gone unheeded in today’s cities around the world. We must urgently accelerate our efforts to build resilience and prevent citizens from facing the devastation seen in Bucharest (1977), or exactly 350 years ago, in (1667) or in (1667), and beyond.
It’s never too late to , to unlock stimulating , and remember why large earthquakes from the past undoubtedly matter for shaping today’s .