Country summary
- Slovak Republic’s average annual temperature increased almost 2°C between 1881 and 2016, and the temperature rise, which has become more marked in recent decades, is expected to continue. Climate projections indicate that Slovak Republic's annual mean temperature for 2050-2100 will be 2.81‑3.68°°ä higher than it was in 1961-1990. Warming is expected to change energy demand patterns, boosting power demand for cooling and reducing it for heating.
- Precipitation patterns are characterised by strong variability. Climate projections show up to 30% greater annual precipitation in 2075 than in 1961-1990, with marked seasonal and geographical variations. The increase in precipitation is expected to be more notable in the winter than in the summer, and in the north than in the south. These precipitation changes may raise the country’s exposure not only to heavy precipitation events, but to droughts.
- Energy is one of the key areas of Slovak Republic’s climate change adaptation strategy and action plans. The National Adaptation Strategy proposes resilience measures for the energy sector such as constructing new electricity lines and equipment and renovating obsolete ones, and protecting energy infrastructure against floods. Slovak Republic’s energy policies also address climate concerns, but proposed actions focus primarily on climate change mitigation rather than adaptation and resilience.
Climate hazard assessment
Temperature
Slovak Republic’s average annual temperature between 1881 and 2016, at a rate that in recent decades. In fact, during 2000-2020 the country’s average temperature rise of 0.0646°C per year significantly outpaced the world average (0.0313°C per year).
The warming rate has been slightly higher for the warmer half of the year (April to September) than for the colder half (October to March). For 2011-2016, the number of days with mean temperature above 27°C than for the 1951-1960 period, while days with mean temperature below ‑5°C .
Climate projections for the second half of the century (2050-2100) show a increase in annual mean temperature compared with 1961-1990. Warming is expected to be , with minor variations by locality. Heatwaves, as well as the number of days with maximum temperature above 30°C, are towards the end of the century.
This rise in average temperature is affecting energy demand, reducing winter heating needs but increasing summer cooling. Unsurprisingly, the number of heating degree days (HDDs) in the past two decades has fallen and cooling degree days (CDDs) have increased.
According to the climate change impacts, vulnerability and adaptation assessment of the Slovak Republic’s on Climate Change, the length of the heating season contracted in both the warmest areas (by 19 days) and the coldest ones (by 20 days) between 1951 and 2010. Nevertheless, electricity consumption could increase, , as power demand for cooling rises. With the country’s peak electricity demand occurring in the winter, this increase in summer demand is projected to flatten Slovak Republic’s yearly consumption profile.
Precipitation
Precipitation patterns of 1881-2016 are characterised by , with severe droughts alternating with regional flooding. Thus, annual precipitation trend was identified for the period, although . While precipitation increased 5% in northern Slovak Republic, the south experienced a decrease of as much as 10%.
Compared with 1961-1990, average annual precipitation is projected to remain stable or increase by 2075, with . Winter precipitation is expected to be 20‑56% higher, while changes in summer precipitation remain uncertain.
Climate changes are likely to amplify . While northern Slovak Republic will likely experience the highest increase in annual precipitation, southern regions will receive even less. Increased precipitation in some locations could lead to flash flooding and infrastructure damage, as occurred in the when it received substantial precipitation in May 2021.
Tropical cyclones and storms
Although Slovak Republic is not frequently exposed to cyclones, windstorms and thunderstorms can impact its energy system. While the total number of thunderstorms is not projected to rise, high-intensity events could become by the end of the century. The country is already experiencing storm-related electricity disruptions, such as those caused in March 2019 by the storm , which cut electricity to 17 000 households in the central region and to almost 9 000 in eastern Slovak Republic.
Policy readiness for climate resilience
The 2011 assesses how climate change will affect Slovak Republic. It analyses climate change impacts and their economic and environmental consequences in eight key sectors – including energy – and recommends adaptation measures. The report specifically addresses security of supply and was an important input for preparation of Slovak Republic’s in 2014 (revised in 2017).
The , launched by the Ministry of Environment, identifies 13 key areas, including energy, and proposes adaptation measures that can be gradually integrated into sectoral strategies and action plans. For the energy sector, it suggests constructing new electricity lines and equipment and renovating obsolete ones, as well as protecting energy infrastructure against floods.
The Ministry of Environment and the Slovak Academy of Sciences submitted the country’s first Climate Change Adaptation Action Plan and its corresponding monitoring and evaluation system in 2020. The Action Plan aims to identify short-term measures for 2020-2022 and medium-term measures for 2022-2025 (looking towards 2028). The National Adaptation Strategy is to be updated in 2025 based on new scientific data on climate change.
Slovak Republic’s energy policies also address climate resilience, although they do not suggest additional specific actions to improve resiliency. The recognises that the energy sector should be adapted to the adverse effects of climate change, as described in the National Adaptation Strategy. The also refers to the National Adaptation Strategy, but because its primary focus is climate change mitigation rather than adaptation, it does not propose any concrete actions.