Author(s): Virginia Iglesias

Why wildfires started by humans, cars and power lines can be more destructive and harder to contain

Source(s): Eos - AGU
Upload your content
A blazing wildfire starts to encroach on residential areas in Braga, Portugal
Bruno Ismael Silva Alves/Shutterstock

Wildfires are becoming increasingly destructive across the U.S., as the country is seeing in 2024. Research shows wildfires are than they were in the 1980s and '90s, with some consuming .

Lightning strikes are one cause, but the that threaten communities are sparked by human activities.

on the ground can spark fires. A broken power line started the that destroyed the town of Lahaina, Hawaii. California's started when a man pushed a burning car into a ravine near Chico. The fire destroyed more than .

What makes these wildfires so destructive and difficult to contain?

The answer lies in a mix of changing climate, the legacy of past land-management practices, and current human activities that are reshaping fire behavior and increasing the risk they pose.

Fire's perfect storm

Wildfires rely on three key elements to spread: conducive weather, dry fuel and an ignition source. Each of these factors has undergone pronounced changes in recent decades. While climate change sets the stage for larger and more intense fires, humans are actively fanning the flames.

Climate and weather

Nights, which used to offer a reprieve with cooler conditions and higher humidity, do so less often, allowing fires to continue raging without pause.

Extreme temperatures play a dangerous role in wildfires. Heat dries out vegetation, making it more flammable. Under these conditions, wildfires ignite more easily, spread faster and burn with greater intensity. In the western U.S., aridity attributed to climate change has since 1984.

Compounding the problem is the rapid rise in nighttime temperatures, . Nights, which used to offer a reprieve with cooler conditions and higher humidity, do so less often, allowing fires to continue raging without pause.

Fuel

Fire is a natural process that has shaped ecosystems for . Indigenous people historically to manage landscapes and reduce fuel buildup. However, a has allowed vast areas to accumulate dense fuels, priming them for larger and more intense wildfires.

Invasive species, , have exacerbated the issue by creating continuous fuel beds that accelerate fire spread, .

Additionally, human development in fire-prone regions, especially in the wildland-urban interface, where neighborhoods intermingle with forest and grassland vegetation, has introduced new, highly flammable fuels. Buildings, vehicles and infrastructure often ignite easily and burn hotter and faster than natural vegetation. These changes have , creating conditions conducive to more severe and harder-to-control wildfires.

Ignition

Human activities have not only tripled the length of the fire season, but they also have resulted in fires that pose a higher risk to people.

Lightning can ignite wildfires, but humans are responsible for an increasing share. From unattended campfires to arson or sparks from power lines, .

Human activities have not only , but they also have resulted in fires that pose a higher risk to people.

Lightning-started fires often coincide with storms that carry rain or higher humidity, which slows fires' spread. Human-started fires, however, typically - hotter temperatures, lower humidity and stronger winds. This leads to greater flame heights, faster spread in the critical early days before crews can respond, and more severe ecosystem effects, such as killing more trees and degrading the soil.

Human-ignited fires often occur in or near populated areas, where flammable structures and vegetation create even more hazardous conditions. As urban development , the probability of human-started fires and the property potentially exposed to fire increase, creating a feedback loop of escalating wildfire risk.

2024 fire season's whiplash weather

The in 2024 intensified fire hazards, with vegetation rapidly drying out and leaving landscapes parched in many areas. In addition, a phenomenon known as , marked by unusually wet winters and springs followed by extreme summer heat, has been especially pronounced in Southern California.

A wet spring fostered vegetation growth, which then dried out under scorching summer temperatures, turning into highly combustible fuel. Severe heat waves, along with the associated lack of nighttime cooling, created conditions where fires not only spread faster, but were also more difficult to contain.

This cycle has fueled some of the biggest fires of the 2024 season, several of which were started by humans. Atmospheric instability during some of these fires also led to the formation of - massive, fire-fueled thunderheads that , including lightning and tornado-like winds that drive flames even further.

Across the country, dry brush, low humidity and strong winds fueled large fires in many states in 2024, to , in several western states, and as . Oregon had a , with burned.

As the factors that can drive wildfires converge, the potential for increasingly severe wildfires looms ever larger. Severe fires also release from trees, vegetation and soils into the atmosphere, increasing greenhouse gas emissions and exacerbating climate change, contributing to more extreme fire seasons.

Explore further

Hazards Wildfire

Please note: Content is displayed as last posted by a Ä¢¹½´«Ã½ community member or editor. The views expressed therein are not necessarily those of Ä¢¹½´«Ã½, Ä¢¹½´«Ã½, or its sponsors. See our terms of use

Is this page useful?

Yes No
Report an issue on this page

Thank you. If you have 2 minutes, we would benefit from additional feedback (link opens in a new window).