Enhancing sustainable flood resilience and energy efficiency in residential structures: Integrating hydrological data, BIM, and GIS in Quetta, Pakistan
This study explores the integration of Building Information Modeling (BIM) and Geographic Information Systems (GISs) to enhance sustainable energy efficiency and flood resilience in residential buildings, with a case study from Quetta, Pakistan. The research leverages BIM to optimize energy performance through scenario-based energy consumption assessments, thermal efficiency, material properties, and groundwater considerations, ensuring structural integrity against water infiltration. Enhanced insulation and double-glazed windows reduced energy use by 11.78% and 5.8%, respectively, with monthly energy cost savings of up to 48.2%. GIS tools were employed for high-resolution flood risk analysis, utilizing Digital Elevation Models (DEMs) and hydrological data to simulate flood scenarios with depths of up to 2 m, identifying vulnerabilities and estimating non-structural damage costs at PKR 250,000 (~10% of total building costs). Groundwater data were also incorporated to evaluate their impact on foundation stability, ensuring the building’s resilience to surface and subsurface water challenges.
A novel BIM-GIS integration framework provided precise 2D and 3D visualizations of flood impacts, facilitating accurate damage assessments and cost-effective resilience planning. The findings demonstrated that incorporating flood-resistant materials and design modifications could reduce repair costs by 30–50%, highlighting the cost-efficiency of sustainable resilience strategies. This research advances sustainable and resilient construction practices by showcasing the dual potential of BIM-GIS integration to address energy efficiency and groundwater-related structural vulnerabilities alongside hazard mitigation challenges. Future applications include automating workflows, integrating renewable energy systems, and validating models across diverse climatic regions to promote the global adoption of innovative urban planning solutions.
Explore further
